Truncated power method for sparse eigenvalue problems
نویسندگان
چکیده
This paper considers the sparse eigenvalue problem, which is to extract dominant (largest) sparse eigenvectors with at most k non-zero components. We propose a simple yet effective solution called truncated power method that can approximately solve the underlying nonconvex optimization problem. A strong sparse recovery result is proved for the truncated power method, and this theory is our key motivation for developing the new algorithm. The proposed method is tested on applications such as sparse principal component analysis and the densest k-subgraph problem. Extensive experiments on several synthetic and real-world data sets demonstrate the competitive empirical performance of our method.
منابع مشابه
Uncertainty Quantification for Geometry Deformations of Superconducting Cavities using Eigenvalue Tracking
The electromagnetic field distribution as well as the resonating frequency of various modes in superconducting cavities are sensitive to small geometry deformations. The occurring variations are motivated by measurements of an available set of resonators from which we propose to extract a small number of relevant and independent deformations by using a truncated Karhunen–Loève expansion. The ra...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملA Truncated RQ - Iteration forLarge Scale Eigenvalue CalculationsD
We introduce a new Krylov subspace iteration for large scale eigen-value problems that is able to accelerate the convergence through an inexact (iterative) solution to a shift-invert equation. The method also takes full advantage of an exact solution when it is possible to apply a sparse direct method to solve the shift-invert equations. We call this new iteration the Truncated RQ iteration (TR...
متن کاملAn Adaptive Chebyshev Iterative Method for Nonsymmetric Linear Systems Based on Modiied Moments
Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in the right half plane may be solved by an iterative method based on Chebyshev polynomials for an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev algorithms , in which ...
متن کاملAdaptive Chebyshev Iterative Methods for Nonsymmetric Linear Systems Based on Modified Moments bY
Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in the right half plane may be solved by an iterative method based on Chebyshev polynomials for an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev algorithms, in which t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013